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ABSTRACT

The development of coal-water slurries as a boiler fuel is rapidly approaching
commercialization. As distinguished from dilute pipeline slurries, fuel slurries are
stable, highly-loaded (e.g. 70% dry coal by weight) liquids which can be transported,
stored, pumped, and burned like residual fuel oil. One of the key technologies required
to obtain highly-loaded, low-viscosity mixtures is the particle size distribution of the
coal. Two derivations of the optimum particle-size distribution for minimum slurry
viscosity are compared and shown to result in equivalent forms. The theory of grinding
is reviewed, and calculated distributions are presented. Experimentally-determined
particle-size distributions obtained by both wet and dry grinding in ball mills are given
and compared with the theoretical grinding results. It is shown that near-optimum
distributions can be obtained by blending.

I. INTRODUCTION

For several years, the Atlantic Research Corporation has been developing coal-water
slurries as a low~cost liquid boiler fuel. As distinguished from dilute pipeline
slurries, fuel slurries are stable, highly-loaded (e.g. 70% dry coal by weight) liquids
which can be transported, stored, pumped, and burned like residual fuel oil. To achieve
the required rheological properties in highly-loaded suspensions, requires a very
carefully selected distribution of particle sizes and the incorporation of surface-
active additives. The subject of particle-size distribution, its optimization and
control, is the subject of this paper.

II. OPTIMUM PARTICLE-SIZE DISTRIBUTION

The rheology of a suspension of particles within a liquid is influenced by a number of
factors which include the size and the distribution of sizes of the particles, particle
concentration, particle shape, and surface charge. The effects of surface properties,
although often very important, do not fall within the scope of this paper.

The sizing of particles to obtain minimum viscosity of a suspension is closely related
to the sizing of particles for maximum packing density of powder beds. 1If we ignore
liquid-particle and particle-particle surface effects, the particle-size distribution
resulting in maximum bed density will also result in minimum viscosity for a specified
particle concentration. Consequently, the large body of literature addressing both
suspensions and powder beds can be utilized. A review of the extensive literature will not
be addressed here; only the work of three authors will be discussed. All of the work will
be limited to either ideal powder beds consisting of spherical particles with only
mechanical interactions or ideal suspensions containing spherical particles and within
which all surface interactions are absent.

In 1928, Furnas (1) derived a theory for the maximum packing density of bimodal
mixtures, i.e. a bed containing particles of two discrete particle diameters. Assuming
that the fractional void volumes, ¥ , of the individual monomodal beds are identical and
that the ratio of the two particle diameters is large, the composition of maximum density
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is obtained if the small particles fill the interstices of the large particles such that
the total bed volume does not increase. In a unit cell, the absolute volume of large
particles is Vy = 1 - V . Filling the void volume Y with small particles, the absolute
volume of small particles is Vg =V (1-V). The volume ratio of large particles to small
particles is 1/y and the void volume of the mixed bed is v2. When the ratio of the two
particle diameters is greater than about 50, the theory is in good agreement with
experimental data. For ratios, less than 50, Furnas employed experimental data to obtain
generalized relationships between voids in the bimodal bed, concentration of large {
particles, void fraction in the monomodal beds, and the particle diameter ratio. These 1
relationships have been greatly utilized in many industries for discrete particle
mixtures. Both theory and experiment have subsequently been extended to multimodal
mixtures of discrete particles.
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Andreasen and Andersen in 1930 (2) and Furnas in 1931 (3) extended the theory to
continuously varying particle diameters. Andreasen and Andersen start by approximating
the continuous distribution with a series of particle size fractions in which the particle
diameters form a geometrical progression. Starting with the fine fraction they
successively add the coarser fractions in such a way that the amount of each fraction added
is proportional to the amount of undersize already present:

j-1
V. -3 V. (1
b=
where i = 1 designates the smallest size fraction
Reducing the constant ratio between size fractions to a differential amount, results in a {

differential equation:

dlnV

ny L= (2)
oD n constant,

which upon solution leads to a continuous particle size distribution:

F =cD" 3)

where F_ = cumulative volume of particles smaller than D
p
¢ = constant

The somewhat arbitrary method by which this result is obtained is justified by comparison
with experimental data which indicate that the exponent n should be in the range of 1/3
- 1/2.

Apparently independently, Furnas in 1931 arrived at a similar but somewhat more
general result. He also approximates the continuous distribution as a geometrical series
of discrete particle diameters. Designating the diameter of the largest particles as D/,
the smallest as Dg, and the size ratio of successive size fractions as q (Furnas used fZ,
but his derivation is applicable to any constant value), the size of each individual
fraction is (starting from the finest fraction):

Dl=DS,D2=qu,...Di=q11DS....D£= quns %)

where N = number of component particle sizes
If q is very large (e.g. 50), the extension of bimodal theory to multimodal mixtures
requires that the volume ratio of each size fraction to the next smallest size fraction,
R, be a constant. Furnas makes the assumption® that this theorem also holds for any q,
however small, with the provision that the volume ratio of consecutive size fractions is
* This can be shown to be equivalent to the basic assumption employed by Andreasen
and Andersen




no longer the same as for the optimum mixture at large values of q. Based on this
assumption, Furnas obtains his equation for the optimum particle size distribution

which he writes as follows:

. ) } Rlog Di _ Rlog DS (5)
p/i Rlog Pﬂ _ Rlog Ds
Furnas did not specify the base of his logarithm. By following his derivation, it is
readily shown that the base is equal to q. Rewriting the preceeding equation and
defining the log's as the natural logarithims:
1
. ) ) gD Di/lnq _ R1nDS/ nq 6)
~ 1nD /1
p/i R1n Pl/lnq R0 S/ nq

Since a¢lnb = pelna gop any values of a, b, and c, the preceeding equation can also be
written

S
F ‘\i= —s (1)
P -
Jiog -]
n = lnr/lng (8)

Furnas' Equation 7 is a more general form of the Andreasen equation, the latter being
equivalent to the former for Dg = 0. The similarity in form between the two equations is
to be expected considering the equivalence in the basic assumptions.

R is equal to 1/p for particle fractions separated by large values of q, but as q

becomes smaller, R must decrease. Furnas presents a method for obtaining this
relationship. First, he considers the optimum discrete particle- size distribution in a
particle-size range specified by upper and lower limits, Dy , and Dg, respectively. He

maintains that there is an optimum number of size fractions within the specified range for
maximum loading since the volume decrease on mixing particles of different sizes becomes
less efficient as the particle diameters become closer together. He next assumes that the
experimentally determined relationship between the volume decrease and the size ratio in
a binary system is the same as the relationship between the overall volume decrease and
the ratio between consecutive sizes in an N-component system. The optimum number of size
fractions is obtained by minimizing the overall volume decrease on mixing the size
fractions in the multicomponent system. Furnas is now ready to obtain his expression for
R. He assumes that the volumetric ratio of the largest particles to the smallest
particles should be the same for any N and therefore RN-1 sould be a constant independent
of q, or equivalently of N. He obtains this constant from his optimum number of size
fractions obtained for a specified size range. Combining results, the exponent n in
Equation 8, is found to be a complex function of p and the ratio Dy /Dg. The first, and
most important conclusion, is that n is independent of q. This meafis that the derivation
is as valid for continuous distributions, as claimed by Furnas, as for discrete
distributions. The validity is of course dependent upon the assumptions employed. For= ¥
0.4 and Dy/Dg = 500, the optimum value of n according to the Furnas analysis is calculated
to be 0.256.

Farris (4) presents his analysis in terms of the viscosity behavior of multimodal
suspensions in a liquid instead of the maximum packing of a particle bed. He optimizes
the particle size distribution to obtain the minimum viscosity for a given volumetric
concentration of particles. He also makes an assumption which is equivalent to that made
by Andreasen and Andersen as represented in Equation 1 and to that made by Furnas in
deriving Equation 5. Farris, however, presents his arguments more logically and with an
improved basis of experimental data.

Farris noted that there were several references in the experimental literature to the

fact that the finer particles in a bimodal suspension behave essentially as a fluid toward
the coarser particles. To be more specific, if the ratio of particle sizes is large (e.g.
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10 or greater), the resistance to motion encountered by a large sphere is the same when
passing through a suspension of smaller spheres as when it passes through a pure liquid
of the same viscosity and density as the suspension.

Farris first starts with the relative viscosity (ratio of suspension viscosity to
liquid viscosity) of a monomodal system, which for non-interacting spherical particles
has been shown experimentally to be a unique function of the volume fraction of solids.
He next adds coarser particles of much larger diameter (i.e. q is large) to the
suspension. Based on the assumption that the fines act like the liquid, he calculates the
relative viscosity of the bimodal mixture using the same form as for the monomodal system.
By successively adding coarser fractions, each larger by a large factor than the next
smaller fraction, he extends his analysis to multicomponent distributions.

Farris obtains the optimum particle size distribution by differentiating the
viscosity of the suspension with respect to composition, equating to zero, and solving
for the compositional variables. The optimum composition of a multicomponent system is
expressed as follows:

¢1=¢2=¢3...=¢N (9)

i
where: ¢, = vi/kgo Vk (10)

.th
volume of i component

volume of liquid

The form of this series of N-1 equations is perfectly satisfactory to define the
optimum composition. As it stands, however, it is difficult to compare with other
equations. If, however, the N-1 equations arec used to solve for N-1 values of V; in terms
of an NEth variable, a particle-size distribution can be constructed. It is convenient to
select the particle-loading, g, defined as the volume of particles dividied by the total

volume, as the NP variable. After considerable algebra, the final equation is as
follows:
i-1
F ) = e -1 (11)
Pl Ny
1/N

where @0=(1-g) (12)
This distribution is independent of the size of the individual fractions. If we specify
size fractions with a geometrical progression of particle diameters and minimum and
maximum particle diameters Dg and Dl , respectively, the preceeding equation 1is
transformed to:

n n
F) _ P -n (13)
pli n_n

Dl Ds

In (1 ) (14)

l1-g

where n = ‘—m—Dl—]]—)-s——

We note that the form of the distribution equation, Eq (14), is exactly the same as that
given by Furnas, Eq. (7). The exponent differs, however. For g = 0.65 and Dl/DS = 500,
a value of 0.17 is calculated for n.

The derivation just described is based on particle-~size fractions separated by large
factors, that is by large values of q. Farris claims that his results, i.e. Eqns. (9) and
(10) are also applicable in systems in which there is an equal interaction between




particles of a different size. For interacting particles, Farris defines a crowding
factor f as the fraction of one size that behaves as if it were the next largest size. For
spherical particles that interact only mechanically: similarity should apply, f should be
equal for all particle sizes, and Equation 9 will be applicable. Applying a definition of
f and proceeding through considerable algebra, it can be shown that Equations 13 and 14
are still pertinent and independent of the value of f.

Equations 13 and 14 were derived starting with a discontinuous particle- size
distribution. In arriving at the final form, the factor q, denoting the separation in
size between successive fractions, does not appear. Consequently, it can be concluded
that the results are equally applicable to continuous distributions.

III. EFFECT OF PARTICLE-SIZE DISTRIBUTION ON VISCOSITY

In the preceeding section, the concept that fine particles in a suspension behave as
a fluid toward coarser particles was used to obtain an optimum particle~ size
distribution. This same concept was also used by Farris to calculate the viscosity of
multimodal suspensions provided the particle size fractions are separated by large
factors. These calculations can be extended to suspensions of mechanically interacting
particles (i.e., the individual size fractions are separated by small factors),
provided the crowding factors are known - presumably obtained experimentally.

The viscosity of coal-water suspensions is greatly influenced by surface chemistry,
which is outside the scope of this paper. Consequently, the viscosities calculated
ignoring these effects are of limited value, and the principal value of these
calculations is to illustrate qualitatively the effect of particle~ size distribution on
viscosity. The viscosity of a monomodal system is shown as a function of volume fraction
of solids in Figure 1. This relationship has been obtained experimentally for non-
interacting rigid spheres and is valid for particles as small as 4pum and as large as
250 g m. As the volume fraction of solids approaches 0.605, the relative viscosity (the
ratio of the viscosity of the suspension, to that of the carrier) tends to very high
numbers. This volume fraction corresponds approximately to a slurry consisting of 65%
by weight of coal in water. Also shown are the relative viscosities of an optimal
bimodal suspension. The reduction in viscosity by using a bimodal suspension is
apparent. Additional reductions are obtained by increasing modality even further; for
a volume fraction of 0.66 (corresponding to a 70% slurry of coal in water), relative
viscosities of infinity, 51, 30, and 23 are calculated for monomodal, bimodal, trimodal,
and tetramodal mixtures, respectively.

IV. PARTICLE-SIZE DISTRIBUTIONS OBTAINED IN BALL MILLS

Coal as ordered from the mine may have a top size of 5 cm or larger. The top size of
the coal to be employed in a fuel slurry is typically 25(Qum or smaller. The particle size
must be reduced, therefore, by a factor of at least 200; the final particle-size
distribution must meet stringent requirements as wnoted in prior sections; and the
comminution must be accomplished in an economical manner.

The process employed in the laboratory by the Atlantic Research Corporation starts
with a hammer crusher with a cylindrical grating placed beneath the rotor, followed by
a ball mill operated in the batch mode. The crushed product is introduced into the ball
mill in either dry or slurry form.

The ball mill is one of only a number of different comminution devices which can be
vsed to prepare pulverized coal. It has been selected for a number of reasons. First,
it can achieve the desired results economically. Second, it is available in a range of
sizes from laboratory mills to production mills with capacities of hundreds of tons per
hour. Third, there exits a wealth of experimental data which enable one to predict
performance, production costs, wear and machine life, and maintenance. Finally,
grinding theories have been developed and compared with experimental ball mill results.
These theories can be a useful aid in obtaining specific particle size distributions and
will be discussed next.




Grinding Theory

A large body of literature exists on the theory of grinding,much of it emanating from
Pennsylvania State University (5-7) and from the University of Utah (8). Most theories
agree on a basic equation for batch grinding which can be written in a number of
different ways. The form used in this work is most useful in obtaining results with a
digital computer. It is convenient to treat the particle size distribution as a series
of discrete sizes as would be obtained if ascertained by a series of screens. Consider
a set of m screens, the coarsest screen being designated by 1 and the finest by m. The
size of the ith screen is designated by its aperture xj. A constant screen ratio, q, is
used so that xj-1/x; = q. Material which is retained on screen i after passing through
screen i-1 has a size range from xj to xj_] and has a weight W;(t) at time t. This
material will be referred to as being of size xj. The breakage equations representing
weights in fractional form are:

-
o) A W) - W () 13
—dt I 5 I B ii
]
by (16)
WR(t) +i§1 Wi(t) =1

where WR(C) fractional weight passing finest screen

k. = rate constant = dlnwi/dt
i
.. =  breakage function = fraction of material obtained
H by primary breakage of size j retaimed on screen i.

In the general case, kj is a function of both time and size x;. The m? values of bi;
are functions of the two sizes, x; and xj. In certain cases (which must be ascertaine
by comparison with experiment), kj is indeendent of time and proportional to xj, and bij
is a normalized function which can be fit by the following equation:

( ¥i-1 )y_/ iy an
X

where Yis an empirically determined constant

Combining the restricted equations for ki and bj; with the differential equation,
permits onme to solve for particle size and particle size distribution as a function of
time. Converting to finite difference form, and employing a fourth-order Runge-Kutta
numerical solver, the equations have been programmed for a digital computer. Input
values are the number of sieves, the screen ratio, g, the fractional weights initially
on each screen, and the constant ¥ . The output consists of the fractional weights on each
screen at generalized times, a-t, where a is equal to the ratio kjxp/xj.

Particle-size distributions obtained from ball mills often fit a Rosin- Rammler-
Bennett (RRB) equation:

A
Fp)D =l-exp [-0.693 [ D (18)
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where D = diameter
As D50 = constants
D50 = 50% by volume of particles are smaller

than this diameter

This distribution of particle diameters extends from zero to infinity, and, for
practical purposes, must be truncated. In obtaining RRB fits of either computer results
or experimental data, only poirts falling within the range 0.05 < Fp < .97 are used.

Typical results of particle-size distributions as predicted by the theoretical
model are given in Figure 2. An empirical correlation of D5y values is shown in Figure
3. Predicted reciprocal D5qg values are linear with time, based on the breakage function
selected.

Experimental Results

Coal-water slurries can be made from a wide range of coals. Although coals of lower
ranks can be employed, bituminous coals have received the greatest attention. Typical
coals have volatile contents between 25 and 40% and Hardgrove indices between 40 and 80.
Approximately 30 such coals have been investigated thus far. Only a single coal will be
discussed here; one with 35% volatile matter, 6% ash, and a Hardgrove index of 41. It
can be considered a typical coal except for the grindability index. Considerable
savings are obtained by using coals with larger Hardgrove indices.

Particle-size distribution curves are determined by wet sieving and by Fraunhofer
plane diffraction for sub~sieve sizes. A Malvern Model 2200 particle sizer and Model
8T1800 analyzer is used for particles in the range of 1.2 - 118 m.

Prior to ball milling, the coal is crushed in a Holmes Bros. Model 201 crusher with
grates containing 1.6 mm diameter holes. A size distribution curve for the product is
shown in Figure 4 and 5. The curve fits the RRB equation with a D5y of 204 ym and a value
of 0.96 for ) . Values of ) are more meaningful when expressed as a ratio of Dgg/Dsq,
the conversion equation being:

D,
80 - 6.8424/)‘ (19)

Pso

For the crushed coal, the ratio Dgg/Dsg is equal to 2.4 and the Dgg is 491lum.

A jar mill without lifters, 21.3 cm in diameter, and 16.5 cm long is rotated at 60
rpm (70% of critical speed) with grinding media consisting of steel balls 1.59 cm in
diameter The empty volume of the jar is 5800 cm3, the ball charge has a bulk volume of
2900 cm3 (50% loading), and the void volume within the ball bed is 1150 cm3. The volume
of dry coal or slurry introduced as a charge to the mill is equal to the void volume, 1150
cm”.

The change in particle-size distribution with dry milling is shown in Figure 4.
Figure 5 shows the results for wet milling in a slurry consisting of equal parts of coal
and water and containing two parts of a petroleum-based surfactant per thousand parts of
coal. These results were statistically fitted to the RRB equation; the resulting RRB
curves are also shown in Figures 4 and 5. Using the RRB equations which best represent
the data, the D5 values were calculated; reciprocal values are plotted against time in
Figure 6. The D5g values as well as the distributions are well represented by the




‘theoretical milling equations with ¥ = 2 for both wet and dry milling and with a = 4.0
s”l  for dry milling and a = 9.3 s~1 for wet milling. A comparison of the rate constants
for wet and dry milling show that the former is the larger by a factor of more than two.

Although the milling results shown here are well-represented by simple breakage
functions, such is not always the case. More complicated functions are required for
different coals and different ball mill conditions.

Obtaining The Optimum Distribution

One method of processing coal-water slurries is to blend dry milled coal with a
slurry of wet milled coal. For example, combining two parts of dry milled coal with
three parts of a 50% slurry results in a slurry containing 70% coal. A blend carried out
in this ratio using the 50% slurry milled for 60 minutes and dry coal milled for 20
minutes has the particle-size distribution shown in Figure 7. A comparison is made with
an optimum distribution calculated according to Equation 13 with Dy = 140, Dg = 2.5, and
n =0.24. The blend of the coarse dry milled coal (D5p = 56 um) and the finer wet-milled
coal (Dgg = 11y m) results in a near-optimum blend with a D5y = 19pm.  This blend of
a coarse and a fine grind to obtain an optimum distribution is sometimes called a bimodal
blend even though that designation is more appropriately limited to distributions with
two maxima.

V. CONCLUSIONS

The optimum particle-size distributions for minimum viscosity or maximum packing
density as derived by Furnas and by Farris have been shown to be equivalent in form,
namely Equation 7. Furnas' equation for the exponent, n, differs somewhat from Farris'
equation, the latter being preferred. These equations have been found to be very
valuable in the formulation of coal-water slurries. It is not possible to predict the
viscosity of these slurries from knowledge only of particle sizes because of the
importance of surface chemistry and the influence on the chemistry of certain additives
which which have been found useful in slurry development.

Near-optimum distributions of particle size can be obtained by blending products
obtained by ball mills even though the individual distributions obtained from these
mills are not optimum. Comminution in ball mills can be described theoretically; these
techniques, derived from the literature, are useful in interpolating and extrapolating
results.
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VII. NOMENCLATURE

Particle-Size Distribution

D particle diameter
f = crowding factor defined by Farris
g = volume fraction of solids in a slurry
FP(D) cumulative volume of particles smaller than D
N = number of component particle sizes
R = ratio of absolute volume of particles present in consecutive
size fractions.
q = diameter ratio between consecutive size fractions
v = volume
V = void volume
$ = volume ratio defined by Farris, Equation 10
Subscripts
i designates size fractions; 1 is the smallest fraction
! = designates largest diameter present
s = designates smallest diameter present
50,80 = designate the volume percentage of particles smaller
than specified diameter.
Grinding
bij breakage function
k = breakage rate constant
m = number of sieves
t = time
Wi =  weight of material retained on the ith sieve
x{ = aperture of the ith sieve size
Y = constant in Equation 17
A = constant in RRB distribution function, Equation 18
Subscripts

i = designates sieves of different sizes, 1 being the
largest sieve
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